DARLOW, S. F. (1960). Acta Cryst. 13, 683.

- Dostrovsky, I., Hughes, E. D. & Ingold, C. K. (1946). J. Chem. Soc. p. 173.
- Dowling, J. M., PURANIK, P. G., MEISTER, A. G. & MIL-LER, S. I. (1957). J. Chem. Phys. 26, 233.
- DUCHAMP, D. J. (1964). User's Guide to the CRYRM Crystallographic Computing System. Pasadena: California Institute of Technology.
- FAVINI, G. & SIMONETTA, M. (1963). Theoret. Chim. Acta, Berlin, 1, 294.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- GRAMACCIOLI, C. M. & MARIANI, C. (1965). Unpublished work.
- HAMILTON, W. C., ROLLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- Howe, J. A. & GOLDSTEIN, J. H. (1957). J. Chem. Phys. 27, 831.
- HUGILL, J. A. C., COOP, I. E. & SUTTON, L. E. (1938). Trans. Faraday Soc. 34, 1518.
- KEIDEL, F. A. & BAUER, S. H. (1956). J. Chem. Phys. 25, 1218.
- KITAYGORODSKY, A. I. (1961). Tetrahedron, 14, 230.

MARIANI, C., MUGNOLI, A. & CASALONE, G. L. (1965). Rend. Accad. Lincei, VIII, 38, 880.

MOSER, C. M. (1953). J. Chem. Soc. p. 1073.

- PAULING, L. (1960). *The Nature of the Chemical Bond*. 3rd ed., p. 260. Ithaca: Cornell Univ. Press.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.
- POMPA, F., ALBANO, V., BELLON, P. L. & SCATTURIN, V. (1963). *Ric. Sci.* 33 (II-A), 1151.
- RAE, A. D. (1965). Acta Cryst. 19, 683.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- SIMONETTA, M. & CARRÀ, S. (1963). *Tetrahedron*, **19** Suppl. 2, 467.
- STREITWIESER, A. JR. (1962). Molecular Orbital Theory for Organic Chemists, p. 126. New York: John Wiley.
- WESTHEIMER, F. H. in NEWMAN, M. S. (1956). Steric Effects in Organic Chemistry, p. 529. New York: John Wiley.
- WHIFFEN, D. H. (1958). In Tables of Interatomic Distances and Configuration in Molecules and Ions, p. M125. London: The Chemical Society.

Acta Cryst. (1967). 22, 236

Structure Cristalline du Dichlorure de Cadmium Diformamide, CdCl₂.2 HCONH₂

PAR ANDRÉ MITSCHLER, JEAN FISCHER ET RAYMOND WEISS

Laboratoire de Chimie Structurale, Institut de Chimie, Université de Strasbourg, 1, rue Blaise Pascal, 67 Strasbourg, France

(Reçu le 20 juin 1966)

The crystal structure of bisformamide cadmium chloride has been determined and refined with threedimensional data using Cu K α X-radiation. CdCl₂.2HCONH₂ is triclinic with $a=8.37\pm0.02$, $b=7.26\pm0.02$, $c=3.77\pm0.01$ Å, $\alpha=93^{\circ}41'\pm20'$, $\beta=109^{\circ}07'\pm20'$ and $\gamma=113^{\circ}48'\pm20'$. Z=1. Space group: PI.

Fourier and least-squares methods were used to determine positional coordinates. The molecules of formamide are bonded to the metal by the oxygen atoms. The structure is built up from chains of octahedral $CdCl_4O_2$ polyedra, linked along the [001] axis. The two O atoms belong to two molecules of formamide lying opposite to the plane containing the Cd atom and the four Cl atoms.

Introduction

Par la détermination des structures cristallines des composés d'addition moléculaire $CdCl_2.2OC(NH_2)_2$ et $CdCl_2.2C_2H_5N_3O_2$ Nardelli, Cavalca & Fava (1957) et Cavalca, Nardelli & Fava (1960) ont montré que la liaison Cd-X est généralement assurée par l'atome d'oxygène dans les composés du type $CdCl_2.2X$, X désignant une molécule organique possédant des groupements C-O et C-N donneurs de paires d'électrons.

Le spectre d'absorption infra-rouge d'un composé d'addition moléculaire permet souvent de déterminer la nature de l'atome donneur lié au métal; l'existence d'une liaison métal-oxygène ou métal – azote entraîne généralement une diminution de la constante de force de la liaison C-O ou C-N et par là, une diminution de la fréquence v(C-O) ou v(C-N) par rapport à la molécule organique libre. Pour CdCl₂.2HCONH₂, le spectre d'absorption infra-rouge, enregistré en suspension dans le Nujol, ne permet pas de déterminer avec certitude si le formamide est lié au cadmium par l'atome d'oxygène ou par l'atome d'azote. En effet, la fréquence de la vibration d'élongation v(C-O) ne change pas par rapport à celle du formamide pur, à l'état liquide (Suzuki, 1960); la fréquence de la vibration v(C-N) augmente, au lieu de diminuer. Le Tableau 1 donne les fréquences des vibrations v(C-O) et v(C-N), du formamide lié au

Tableau 1. Fréquences des vibrations (C-O) et v(C-N)du formamide engagé dans CdCl₂.2HCONH₂ et du formamide non lié

Fréquences		
observées	$CdCl_2.2HCONH_2$	HCONH ₂
v(C-O)	1690 cm ⁻¹	1690 cm ⁻¹
v(C–N)	1350 cm ⁻¹	1309 cm ⁻¹

cadmium dans $CdCl_2$. 2HCONH₂ et du formamide non lié.

Afin d'étudier la stéréochimie du cadmium et la nature de la liaison cadmium-formamide, nous avons déterminé la structure cristalline de CdCl₂.2HCONH₂.

Données expérimentales

Le dichlorure de cadmium diformamide a été préparé selon une méthode de Nardelli & Cavalca (1957). Les cristaux appartiennent au système triclinique. Les valeurs trouvées pour les paramètres cristallins sont: $a=8,37\pm0,02, b=7,26\pm0,02, c=3,77\pm0,01$ Å. $\alpha=93^{\circ}41'\pm20', \beta=109^{\circ}07'\pm20', \gamma=113^{\circ}48'\pm20'.$

Z=1. Groupe spatial $P\overline{1}$.

La masse volumique mesurée par picnométrie est de 2,41. La masse volumique calculée pour un motif $CdCl_2.2HCONH_2$ par maille est égale à 2,37.

L'enregistrement des plans réciproques hk0, hk1 et hk2 a été réalisé à l'aide d'un rétigraphe muni d'un dispositif intégrateur (274 réflexions indépendantes, $\sin \theta_{\max} = 0.951$, λ Cu $K\alpha = 1.5418$ Å). Le cristal utilisé a été taillé, au préalable, en cylindre d'axe [001] et de diamètre égal à 0.25 mm. Les intensités diffractées ont été mesurées par microdensitométrie et corrigées des facteurs de Lorentz, de polarisation et d'absorption. Les facteurs d'absorption ont été estimés graphiquement à l'aide des tables de Bond (1959).

Détermination et affinement de la structure

La structure a été établie par la méthode de l'atome lourd. Le cadmium a été placé à l'origine; la projection de la fonction de Patterson suivant l'axe [001] a permis de localiser les atomes de chlore. Les coordonnées x et y des autres atomes O, C et N ont été déterminées par le calcul de la projection de la fonction densité électronique et de la fonction différence en utilisant les signes (tous positifs) des contributions des atomes de cadmium et de chlore.

Les coordonnées z des atomes ont été déterminées par le calcul des sections de la densité électronique et de la fonction différence parallèlement aux plans (001) et (010). A ce stade, la valeur calculée du facteur résiduel $R=\Sigma ||F_o|-|F_c||/\Sigma|F_o|$ est égale à 0,138 pour l'ensemble des réflexions mesurées.

Les valeurs des coordonnées atomiques et des facteurs de température isotropes, ont été affinées à l'aide de sections de la fonction différence au niveau de chaque atome et par une méthode de moindres carrés à l'aide d'un programme d'affinement tridimensionnel à matrice complète (Grandjean, Wendling, Weiss & Strosser, 1964). Le schéma de pondération utilisé est celui de Cruickshank (1961). En fin d'affinement, la valeur du coefficient R est égale à 0,083 pour les 274 réflexions indépendantes mesurées.

Le Tableau 2 donne les valeurs finales des coordonnées atomiques et des facteurs d'agitation thermique isotrope, ainsi que les déviations standard calculées selon Cruickshank (1949); la valeur du paramètre cristallin c étant voisine de a/2 et de b/2, les déviations standard diffèrent peu suivant les trois axes, bien que l'indice l, dans la direction d'enregistrement ne varie que de 0 à 2, tandis que h et k varient respectivement de $\overline{8}$ à 9 et de $\overline{8}$ à 8.

Le Tableau 3 donne les valeurs des facteurs de structure observés et calculés.

Description et discussion de la structure

Entourage du cadmium

Chaque atome de cadmium est entouré octaédriquement. L'octaèdre est constitué par deux atomes d'oxygène appartenant à deux molécules de formamide situées de part et d'autre d'un plan formé par l'atome de cadmium et quatre atomes de chlore.

L'addition de deux molécules de formamide à $CdCl_2$, n'entraîne pas la modification du nombre de coordina-

Tableau 3. Facteurs de structure observés et calculés

_		_				_	-					
	h k 1	:	10 Fo	1	10 Fo	1		b x 1	;	10 Fo	:	10 Fo
	070	:	273	1	211	-†	÷	570	÷	202	:	100
	110	:	161	:	155	:		520		302		300
	120	-	507		520			570		114		100
	130	-	602	:	501	:		600		301		334
	140	:	251		211	:		620		241		231
	150	-	162	- :	122	- 1		650		231		212
	160		202		200			650		211		212
	170	:	162		100			670		149		100
	110		125	:	464			670		513		204
	120		201		175			420		300		317
	1.50	:	210		110	:		670		117		117
	110		205		211			430		201		204
	220	÷.	540		444			200		202		310
	220	:			400			100		210		525
	250		208		420			110		377		127
	200		610		652			120		102		241
	215		619		0.72			740		340		343
	220		431		473			120		312		330
	240		329		337			100		104		215
	250		467		401	•		010	*	239		240
	260		209		241	•		020		227		245
	280		220	*	235	:		840		148	:	162
	300		172		149	•	,	850		206		249
	310		390	*	355		:	920		197		221
	350		394		351		1	950	,	137		172
	350		273		258	:		960		172		217
	310		417	1	408		1					
	320		727		699		1		:			
	330		405	:	395		:	031		377		402
	340		227		204		:	051		221		207
	350		375	:	376		:	061	۰.	244		231
	360		313		346		1	041		181		172
	400		381		350		1	051		395	1	362
	410		513		461		1	061		181		185
	420		269		262			121		456		509
	440		217		214	:	:	<u>141</u>		345		323
	450		223		220			151		469		447
	410	:	317		292		:	121		320		404
	420		508		478			T31	1	350		350
	430	í.	375		382			T51		206		185
	450		206		210			T61		275		257
	460	í.	270		303			131	1	363	1	417
	500		426	÷.	409	÷		161		355		362
	512	:	304		191			171	÷.	220		256
	510	:	163	÷	159			121	÷	445		423
	510	:	270		261			131		238	1	228
	220	1	417	1	426	:	-	141		iú	÷	287
	234	•	*** 1			•						7

Tableau 2. Coordonnés atomiques, facteurs d'agitation thermique isotropes et déviations standard

x	у	Z	В (Ų)	$\sigma(x)$ (Å)	σ(y) (Å)	σ(z) (Å)
0	0	0	0,8			_
0,175	0,275	0,560	1,2	0,006	0,005	0,007
0,248	0,918	0,034	1,2	0,030	0,038	0,050
0,253	0,774	0,166	0,6	0,049	0,042	0.045
0,412	0,751	0,216	1,4	0,061	0,056	0,070
	x 0 0,175 0,248 0,253 0,412	x y 0 0 0,175 0,275 0,248 0,918 0,253 0,774 0,412 0,751	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1 adleau 5 (suite)	Ta	bl	leau	3	(suite)
--------------------	----	----	------	---	---------

						_						
b x 1		10 Fo	-	10 Fe	1		6 K 1	÷	10 Fo		10 %	-
1 271	:	456		512			สบ		215	:	240	-
	:	107	:	101		: :	Ter	:	212		245	
	:	101		301		: :	1		1 20		167	- 2
: <u>53</u>	•	173		201		: :	191		100		100	
541		310		209	. :	: :	101	•	173		1,70	
221		314		290		•	101		400		349	
		2-2		37.		•		•	200		410	
1 251	•	432		510	•	•	221		205		205	
* 241	:	219	•	204	•	•	421		306	1	315	
1 251	,	146		152	1		401		210	•	202	
: 271		265	:	281		•	411		162		163	
1 2 <u>0</u> 1		409		468	:	•	501	1	299		298	
: 2 <u>3</u> 1	:	411	1	496		•	511		168		173	
: 241		413		414	- 1		521		370	t	322	
1 251	1	163	1	177			531		327		307	
1 261		235	:	263	:		511		498	;	461	
: 271		306		333			541		319		306	
211	,	278		276			551		119		363	
2 2 3 1	÷	271	i	246			551	-	263		275	
241		407		368			ร์โ		257		220	,
251		147		159			ร์บิ		172		160	
501		66.7		69.7		:	1		252		256	
301		281		256	:	:	£5	:	214	:	244	:
		201		274		:	5	:	180	:	102	
1 221		510	1	214			201		102		172	
1 341		311	۰	200	•		211	•	240	•	229	•
: 311		310		334		:	521		370	•	342	•
r <u>3</u> 21	1	237		222	•		531		150		105	•
:]]]		525	:	532	:		611	:	272	•	263	
: 341		433	:	470	1	:	621	1	368	:	325	- 1
s 351	1	165	۰.	163	1	1	611	1	180	۱.	155	۱.
1 361	:	173	:	182			821		397		369	
: 371		284		293		1	631		274		251	
1 101		469		445			č41		154		150	
រំរាំ		433		447			651		276		281	
1 121		242	;	241		:	661		269		292	
		356		350			671	1	156		171	
: :::	:	111	:	461			781	;	175		174	
	-	210		261	:	:	651	:	207		198	
21		239		211	:	:	451	:	110		287	
: 311	•	170		187		:	441		116	:	162	
: 301	•	110	1	701		÷	0.01		200	:	176	
: 311	:	169		157	•	•	011	•	200		11/	
: 331	:	290		256	•	•	221		211		130	
: 341	:	220		196	•	•	111		240		~~~	•
: 401		531		492		:	721		407	*	400	
: 421		241		241		۱.	731	1	321	•	301	,
: 431		361		350	:		751		530		233	1
1 441		190		183			701		248		533	:
311	-	557		576	:		721		196		161	
711		111	÷	118		:	522	:	250		214	:
: 48	:	192	:	208	;		522		247	1	277	
: 751		192	1	208	•		255	•	247	,	411	

Tableau 3 (suite)

				· · · ·		<u> </u>	.						
•	h k	1 :	10 Fo		10 Fc		1	b k	1 :	10 Pe		10 Po	
ł		. 1					1				ţ.		_1
;		1						FT -	1		1		
ŧ.	731		333	1	318			222		250	:	214	
	761		192	.*	208		,	222		247	,	277	
	711		243	•	252	•		252		243		273	
	201	•	310	•	303			502		294	•	267	•
	611		2/5		242		1	202		2222		519	
	821		100		101			236		140		213	
	8.0		31.7		307			242		200		201	- 5
	641		200		213			292		100		101	
	561		130		110			214		310		2/4	
	201		221		100	:		212		310		201	
	255		242		190			2.2		333		340	
	151	:	112		477			762		179		142	
	***	:	244	:	411	:	:	602	:	210	:	201	
				:		:	:	612		277	:	255	
	072	:	106	:	315	:	:	642		112	:	105	
	012	:	281	:	144	:	:	652	:	272	:	261	
	122	:	201	:	430		1	712		309		248	
	142	;	129		142	-	÷.	722		191	;	184	
	152		114		152	i	÷	712		112	i.	261	
	312		129		158		÷	742		347		N N	
	342		191		175			752		181		176	
	252		221		202	i	÷	712		217	i	202	
	242		286		328		÷.	722	i	214	i i	184	
	252		257	i	263		i.	742		198	÷	191	
	252		332		369			752	:	236		224	
	262		284		291	:		142	,	191		254	
	222		263		278			302		1 38		183	
	325		336	1	382			352		234	,	175	
	<u>7</u> 25		262	1	252		:	335		207		318	1
	342	:	188	:	242	:	t	432		191		318	
	352		356		361		ŧ	472	:	28 ?		258	
	362		213		211	:	:	512		453		361	
	352		219		242			232		505	1	158	
	365		300		278	t	ŧ	252		172	1	145	,
	312	1	299		305	:	1	602	:	390		356	;
	322		218	1	201			102	*	323		217	
t	412	3	354	1	406	1			:		•		
	422		379		341		· -		. 1				
ŧ	<u>4</u> 52		219	:	209								
	462	1	291		275								
:	402	1	282	1	293	:							
	422	1	176	:	193								
:	432	1	311		375	1							
:	442	1	185	+	190								
1	462	•	188	•	175	•							
t	412		348	:	336	,							
	502		275										

tion 6 du cadmium. Dans $CdCl_2.2HCONH_2$, deux atomes d'oxygène occupent les sites libérés par la rupture de deux liaisons Cd–Cl de l'octaèdre régulier autour de l'atome de cadmium dans $CdCl_2$; les six ligands n'étant plus équivalents, l'entourage octaédrique du cadmium devient irrégulier. Seul le centre de symétrie sur le cadmium subsiste; l'octaèdre appartient au groupe de symétrie ponctuel C_i .

Le Tableau 4, publié antérieurement (Weiss, Mitschler & Fischer, 1966) donne les valeurs des distances interatomiques, des angles de valence et des déviations standard concernant l'entourage du cadmium.

La liaison cadmium-formamide est assurée par l'atome d'oxygène:

(i) avec l'atome d'oxygène disposé en

$$x_1 = 0,248, y_1 = 0,918$$
 et $z_1 = 0,034,$

et l'atome d'azote en

$$x_2 = 0,412, y_2 = 0,751$$
 et $z_2 = 0,216,$

les valeurs des résidus des sections de la fonction différence sont égales à:

+0,37 e.Å⁻³ au point x_1 , y_1 , z_1 (Fig. 1) +0,33 e.Å⁻³ au point x_2 , y_2 , z_2 (Fig. 2)

Lorsque les coordonnées atomiques de l'oxygène et de l'azote sont permutées, ces résidus s'élèvent à:

Fig.1. Section de la fonction différence à la cote z=0,034. Équidistance des lignes de niveau: $0,5 \text{ e.}\text{Å}^{-3}$. Les lignes négatives sont en pointillés.

Tableau 4. Distances interatomiques, angles de liaison, déviations standard de l'entourage du Cd

Distar	nces	σ	Angles		σ
(Å))	(Å)	(°)		(°)
Cd-Cl ₁	2,383	0,008	$Cl_I - Cd - Cl_Iv$	89,8	0,3
Cd-Cl ₁₁	2,912	0,008	$Cl_I - Cd - O_I$	83	1
Cd-O ₁	2,34	0,03	$Cl_I - O_{II} - Cl_{III}$	90,1	1,2
O _I -Cl _I	3,15	0,04	$O_I - Cl_{III} - O_{II}$	89,2	1,3
$O_I - CI_{II}$	4,06	0,04	$Cl_I - O_I - C_I$	102	2
$O_I - Cl_{III}$	3,52	0,04	$Cl_{II} - O_I - C_I$	74	2
$O_1 - C_1$	1,20	0,05	$Cd - O_I - C_I$	119,1	1,2
$C_I - N_I$	1,36	0,07	$O_I - C_I - N_I$	115,7	3,2

+ 1,48 e.Å⁻³ au point
$$x_1, y_1, z_1$$

$$-1,49 \text{ e.} \text{Å}^{-3} \text{ au point } x_2, y_2, z_2$$
.

Dans les deux cas, les valeurs des facteurs d'agitation thermique isotropes utilisées sont égales à 1,2 Å² pour l'atome d'oxygène et à 1,4 Å² pour l'atome d'azote.

La déviation standard sur la densité électronique pour une position générale, calculée selon Cruickschank & Rollett (1953) est de $0,3 e.Å^{-3}$.

Les maxima de densité électronique situés en x_1, y_1, z_1 et x_2, y_2, z_2 doivent être attribués respectivement aux atomes d'oxygène et d'azote.

(ii) L'affinement tridimensionnel par moindres carrés aboutit à des valeurs divergentes pour les coordonnées atomiques et les facteurs d'agitation thermique isotropes, si les coordonnées x_1, y_1, z_1 et x_2, y_2, z_2 des atomes d'oxygène et d'azote sont permutées.

(iii) Les distances interatomiques correspondant à cette attribution sont: $d(C-O) = 1,20 \pm 0,05$ Å et $d(C-N) = 1,36 \pm 0,07$ Å. Ces valeurs sont compatibles avec celles trouvées par Ladell & Post (1954) dans le

Fig.2. Section de la fonction différence à la cote z=0,216. Équidistance des lignes de niveau: $0,5 \text{ e.}\text{Å}^{-3}$. Les lignes négatives sont en pointillés.

Fig. 3. Enchainement de deux motifs élémentaires.

formamide cristallisé, soit $d(C-O) = 1,255 \pm 0,018$ Å et $d(C-N) = 1,30 \pm 0,017$ Å.

La liaison cadmium-formamide est probablement assurée par un doublet électronique libre de l'atome d'oxygène; l'hybridation de cet atome est alors sp^2 , en effet:

(i) L'angle Cd–O–C vaut $119,1 \pm 1,2^{\circ}$ (Tableau 4).

(ii) Les atomes Cd, O, C et N peuvent être considérés comme étant coplanaires; le meilleur plan moyen, calculé selon Schomaker, Waser, Marsh & Bergman (1959) et passant par l'atome de cadmium, a pour équation:

$$0,570X+0,454Y+0,684Z=0$$
.

Les distances des trois atomes O, C et N à ce plan, valent respectivement 0,02 Å; 0,10 Å et 0,04 Å. Un test statistique en χ^2 , tenant compte des déviations standard de ces atomes, montre que ces écarts ne sont pas significatifs.

Enchainement des octaèdres et liaisons interchaines

Les octaèdres $CdCl_4O_2$ sont liés par deux arêtes opposées, constitutées chacune par deux atomes de chlore. Ils forment des chaînes orientées parallèlement à l'axe [001]. La Fig. 3 montre l'enchaînement de deux octaèdres.

La Fig.4 montre le remplissage de la maille triclinique. L'entourage direct d'un atome d'azote N_I est constitué par quatre atomes de chlore coplanaires Cl_I, Cl_{III}, Cl_{II} et Cl_{IV}; les valeurs correspondantes des distances interatomiques, angles et déviations standard sont données par le Tableau 5. Les chaînes sont reliées entre elles par des liaisons hydrogène intervenant vraisemblablement entre les atomes d'azote N_I et les atomes de chlore Cl_{II} et Cl_{IV}, les distances N_I-Cl_{II} et N_I-Cl_{IV} étant respectivement de 3,48 et 3,35 Å; les distances N_I-Cl_I et N_I-Cl_{III} sont plus longues (Tableau 5).

Tat	oleau 5. Di	istances inter	atomiques, a	ngles et	devia-
tions	standard	concernant	l'entourage	d'un	atome
		d'azot	e N _I		

Distances interatomiques N _I -Cl _I N _I -Cl _{II}	d (Å) 3,76 3,48 3,35	$\sigma(d)$ (Å) 0,065 0,065 0.065
NI-ClIII	4,85	0,065
Angles	θ (°)	σ(θ) (°)
$Cl_I - N_I - Cl_{III}$	67	1,8
$\begin{array}{c} Cl_{I} - N_{I} - Cl_{IV} \\ Cl_{II} - N_{I} - Cl_{III} \\ Cl_{II} - N_{I} - Cl_{IV} \end{array}$	94 111 90	1,8 1,8 1,8

Nous remercions Monsieur le Professeur P. Lacroute, Directeur du Centre de Calcul de la Faculté des Sciences de Strasbourg, d'avoir bien voulu mettre à notre disposition l'ordinateur Bull/ET.

Fig.4. Remplissage de la maille.

Références

- BOND, W. L. (1959). In International Tables for X-ray Crystallography, Vol. II, p. 291. Birmingham: Kynoch Press. CAVALCA, L., NARDELLI, M. & FAVA G. (1960). Acta Cryst.
- 13, 594.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-Ray Crystal Analysis, p. 32.
- CRUICKSHANK, D. W. J. & ROLLETT, J. S. (1953). Acta Cryst. 6, 705.

GRANDJEAN, D., WENDLING, J. P., WEISS, R. & STROSSER, R. (1964). Bull. Soc. franç. Minér. Crist. 87, 87.

- LADELL, J. & POST, B. (1954). Acta Cryst. 7, 559.
- NARDELLI, M. & CAVALCA, L. (1957). Ric. Sci., 27, 2144.
- NARDELLI, M., CAVALCA, L. & FAVA, G. (1957). Gazz. chim. Ital. 87, 1232.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- SUZUKI, I. (1960). J. Chem. Soc. Japan, 33, 1359.
- WEISS, R., MITSCHLER, A. & FISCHER, J. (1966). Bull. Soc. chim. France, 3, 1001.

Acta Cryst. (1967). 22, 240

Crystal Structures of Nitrates of Divalent Hexaquocations I. Hexaquozinc Nitrate

BY A. FERRARI, A. BRAIBANTI, A. M. MANOTTI LANFREDI & A. TIRIPICCHIO. Istituto di Chimica generale della Università di Parma, Italy

(Received 11 July 1966)

The crystal structure of hexaquozinc nitrate has been solved by three-dimensional methods and refined by differential syntheses. The crystals are orthorhombic, space group *Pnma*, with a = 12.34, b = 12.85, c = 6.29 Å. The structure is composed of cations $[Zn(OH_2)_6]^{2+}$ and anions NO_3^- . The hexaquocation has practically octahedral symmetry, with $Zn-OH_2 = 2.097 \pm 0.010$ Å, which is very close to the values quoted in the literature. The nitrato anion has trigonal symmetry, with $N-O_{av} = 1.242 \pm 0.009$ Å, and is planar. The hexaquocations and the nitrato anions are held together by a network of hydrogen bonds, each H₂O forming two hydrogen bonds with oxygen atoms of nitrato groups. Hydrogen bond lengths are in the range 2.778 – 2.995 Å.

Introduction

The hexaquocations of divalent metals are the most common complexes considered in coordination-compound chemistry. One could expect ions of similar size and properties such as Zn^{2+} , Mg^{2+} , Ni^{2+} to form isomorphous series of compounds. The crystal structure, however, of hexaquozinc nitrate, orthorhombic (Ferrari & Braibanti, 1958), of hexaquomagnesium nitrate, monoclinic (Ferrari & Braibanti, 1958; Mozzi